Theoretical Advances and Applications in Operations Research Modeling Non-normal Phenomena

シリーズ名
久留米大学経済叢書18
著者名
譚 康融 編/ジョー・ガニ 監修
価格
定価 5,500円(税率10%時の消費税相当額を含む)
ISBN
978-4-7985-0056-0
仕様
菊判 上製 254頁 C3033
発行年
2011年3月
ご注文
  • 紀伊國屋
  • amazon
  • 楽天ブックス
  • セブンネットショッピング

内容紹介

本書は,オペレーションズリサーチ分野での最新研究結果を収録した研究論文集であり,特に非確実性下での非正規環境におけるモデリング手法を取り上げている。内容は確率理論から,金融工学,バイオ統計学まで,多岐にわたっており,非正規モデリングにおける国内外の最新結果を記し,理論モデルだけではなく,数値例やシミュレーション結果,図表等を用いながら研究成果を示している。

目次

Preface
 

Part I Stochastic Analysis

 
Chapter 1 Transmitting an Animal Infection to a Human Population . . . . . Joe Gani and Randall J. Swift
  1.1 Introduction
  1.2 A Deterministic Model for Animal to Human Infection
  1.3 A Simple Stochastic Model for Fixed N Animal Infectives
  1.4 An Approximate Stochastic Model for Time Dependent Animal Infectives
  1.5 Concluding Remarks
 
Chapter 2 On the Mode of a Convolution Density Function of the Scaled Normal and Pearson Type VII Distributions . . . . . Kangrong Tan
  2.1 Introduction
  2.2 Convolution Density Function of the Pearson Type VII and the Normal Distributions
    2.2.1  Convolution of the Pearson VII and the Normal Distributions
    2.2.2  Convolution of a Student t and a Normal
  2.3 Numerical Experiment
  2.4 Concluding Remarks
 
Chapter 3 Assessing Similarity of Two Survival Functions Based on Censored Data and the Trimmed Mallows Distance . . . . . Yingchun Luo, Xianming Tan and Dongsheng Tu
  3.1 Introduction
  3.2 Definition of the Similarity of Survival Functions Based on the Trimmed Mallows Distance
  3.3 Empirical Trimmed Mallows Distance and Its Asymptotic Distribution
  3.4 Bootstrap Tests for Similarity Hypotheses
  3.5 Simulation Studies and Application to Data from a Clinical Trial
  3.6 Conclusions and Discussion
 
Chapter 4 Modeling Non-normal Phenomena Using a Mixture Distribution . . . . . Kangrong Tan
  4.1 Introduction
  4.2 Properties of a Mixture Distribution
    4.2.1 Methodology of Mixture Distributions
    4.2.2 Some Properties of Mixture Distributions
    4.2.3 Generating Random Numbers Based upon a Mixture Distribution
    4.2.4 Estimation of Parameters and Weights
  4.3 Monte Carlo Simulation Based on Mixture Distributions
    4.3.1 Evaluating the VaR
    4.3.2 Particle Filtering with Non-normal Noise
  4.4 Approximation of Returns Distribution Based on the Mixture Distributions
    4.4.1 Conventional Distributions
    4.4.2 Numerical Results
  4.5 Conclusions
 
Chapter 5 Analysis of the Tail Distribution of Network Link Delays Using Importance Sampling . . . . . Kangrong Tan and Shozo Tokinaga
  5.1 Introduction
  5.2 Network Tomography and Its Estimation
    5.2.1 Network Tomography and Link Delay
    5.2.2 Pseudo Likelihood Estimation
    5.2.3 The PLE Algorithm
  5.3 Network Topology Estimation Based on the GP
  5.4 Importance Sampling for Tail Distributions
    5.4.1 Rare Events and Importance Sampling
    5.4.2 Determining the Importance Function
  5.5 Numerical Applications
    5.5.1 Estimation for Artificially Generated Delays
    5.5.2 Improved Estimation by IS
    5.5.3 Other Network and Delay Distributions
    5.5.4 Delays with the Erlang Distribution
  5.6 Concluding Remarks
 
Chapter 6 Approximating a PDF with a Mixture Distribution and Its Application to Tail Distribution Analysis . . . . . Kangrong Tan and Shozo Tokinaga
  6.1 Introduction
  6.2 Approximation of the p.d.f. Using the GA
    6.2.1 Why Use a Mixture Distribution ?
    6.2.2 GA-based Optimization
    6.2.3 Analysis of Tail Distribution
  6.3 Improved Tail Estimation by IS
    6.3.1 Basics of IS
    6.3.2 Importance Function
  6.4 Numerical Experiments
    6.4.1 Stock Returns
    6.4.2 Tail Estimation Using IS
  6.5 Conclusion
 

Part II Stochastic Analyses Combined with Artificial Intelligence Approaches in Recent Operations Research

 
Chapter 7 Estimating Firm Status Based on the Statistical Properties of Stock Ranges . . . . .  Kangrong Tan and Shozo Tokinaga
  7.1 Introduction
  7.2 Order Statistics
  7.3 Comparison of Statistical Properties of Returns and Ranges
    7.3.1 Descriptive Statistics
    7.3.2 Comparison of ACFs
    7.3.3 Fractality in Stock Ranges
  7.4 Applying Fractality to Estimate the Status of a Firm
    7.4.1 Kernel-based Discriminant Analysis
    7.4.2 Numerical Applications
  7.5 Concluding Remarks
 
Chapter 8 Distribution Approximation Based on the Tsallis Diffusion Process . . . . . Kangrong Tan and Shozo Tokinaga
  8.1 Introduction
  8.2 The Tsallis Anomalous Diffusion Process
    8.2.1 Tsallis Entropy and the Fokker-Planck Equation
    8.2.2 GA-based Parameter Optimization
  8.3 Applications to Stock Markets
    8.3.1 Evolution of Daily and Intradaily Returns
    8.3.2 Evolution of Distributions over Time Spans
  8.4 Concluding Remarks
 
Chapter 9 Suppression of Fluctuations in Predictions of Particle Filtering with the State Equation Approximated by Genetic Programming . . . . . Shozo Tokinaga and Kangrong Tan
  9.1 Introduction
  9.2 Summary of PF State Estimation and GP-based Approximation
    9.2.1 Estimation of True States Based upon Observed Data
    9.2.2 Basics of the PF
    9.2.3 GP-based Equation Approximation
    9.2.4 Basic Functions Used for Approximation
  9.3 Model Setting and Suppression of Fluctuations
    9.3.1 Model W and Its State Estimation
  9.4 Numerical Results
    9.4.1 State Estimation and Supression for Artificial Data
    9.4.2 Application to Real Market Data
  9.5 Concluding Remarks
 
Chapter 10 Bond Rating Based on Fuzzy Inference with Membership Functions Tuned by the Genetic Algorithm . . . . . Kangrong Tan and Shozo Tokinaga
  10.1 Introduction
  10.2 Fuzzy Inference
     10.2.1 Optimization of Weight
     10.2.2 Discretization of Inference Result
     10.2.3 GA-based Membership Function Optimization
  10.3 Bond Rating Based on Fuzzy Inference
     10.3.1 Bond Rating
     10.3.2 Selection of Financial Ratios
     10.3.3 Discretizing the Bond Rating Categories
  10.4 Numerical Results
     10.4.1 Case I (exclusive data)
     10.4.2 Case II (partly using same data)
     10.4.3 Comparison with Other Methods
  10.5 Conclusion
 
Chapter 11 The State of the Art of Simulation Approaches . . . . . Kangrong Tan and Shozo Tokinaga
  11.1 Introduction
  11.2 Simulation Approaches
     11.2.1 Monte Carlo Methods
     11.2.2 Quasi-Monte Carlo Methods
     11.2.3 Artificial Intelligence Methods
  11.3 The MCMC Method
     11.3.1 Bayesian Inference
  11.4 Simulation Software
     11.4.1 Released Software Packages
     11.4.2 Building Programs
     11.4.3 Restrictions on Software and Hardware
     11.4.4 Some Solutions to the Restrictions
  11.5 Summary
 
Chapter 12 A Heuristic Type of SDEs and the Resulting Class of Continuous-time First Order Markov Processes with Non-negative Integer-valued Margins . . . . . Rong Zhu
  12.1 Introduction
  12.2 Continuous-time First Order Markov Processes with Non-negative Integer Margins Based on Expectation Thinning
  12.3 The Heuristic SDE and Resulting Continuous-time First Order Markov Processes
     12.3.1 Independent Increment Processes
     12.3.2 The Generalized Ornstein-Uhlenbeck SDE
     12.3.3 Heuristic Solution to the Generalized SDE
     12.3.4 Some Resulting Cases
     12.3.5 Working Tool to Develop Models for Count Data Time Series
  12.4 Discussion
 
Index

著者紹介

譚 康融(たん こうゆう)/Kangrong Tan
久留米大学経済学部教授。
1987年,中国・復旦大学計算機科学学部情報科学科卒業。
1999年,久留米大学経済学部講師。
2000年,九州大学大学院経済学研究科博士後期課程修了。博士(経済学)。

ご寄附のお願い

お勧めBOOKS

前近代イスラーム社会と〈同性愛〉

前近代イスラーム社会と〈同性愛〉

本書は、およそ9-14世紀のイスラーム社会における〈同性愛〉という概念が芽生えていく過程を明らかにするものである。一般に、現代に至るまでイスラーム法では同性愛が禁じられているが、歴史的には男性同士の性愛が文学作品などに広 […]

詳細へ

タマリンドの木に集う難民たち

タマリンドの木に集う難民たち

2013年12月、南スーダンの首都ジュバで生じた政治家同士の対立がもととなった武力衝突は、瞬く間に南スーダン全土を巻き込む内戦と化した。一民族をターゲットとした「ジュバ虐殺」の後、人々は国家から押し付けられた「民族対立」 […]

詳細へ

液体ロケットの構造システム設計[改訂版]

液体ロケットの構造システム設計[改訂版]

日本の液体ロケット開発は、アメリカから導入されたデルタ・ロケットの技術を基礎としてスタートした。デルタ・ロケットは元々中距離弾道ミサイルとして開発されたロケットであることから、導入した液体ロケット技術は日米政府間協定によ […]

詳細へ

若者言葉の研究

若者言葉の研究

生きている言語は常に変化し続けています。現代日本語も「生きている言語」であり、「…

詳細へ

九州大学出版会

〒819-0385
福岡県福岡市西区元岡744
九州大学パブリック4号館302号室
電話:092-836-8256
FAX:092-836-8236
E-mail : info@kup.or.jp

このページの上部へ